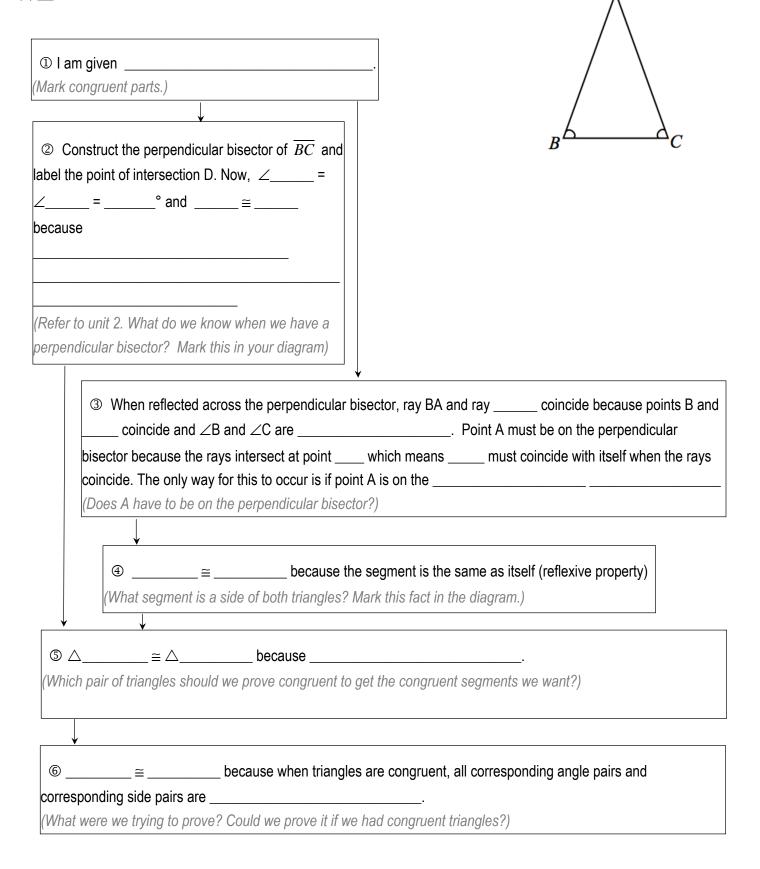
5.2 Name (print first and last) 5.2 Congruence SLO: I can use SAS≅ to prove the isosceles triangle theorem.	Per Date: <u>12/13 due 12/15</u> Geometry Regents 2013-2014 Ms. Lomac
(1) Prove: If a triangle is isosceles then the base angles are congruent.	
 ① I am given	iitions.)
③ I can construct auxiliary line segment that bisec (Where is the vertex angle? What does bisect mean? The segrent the triangle.)	ment needs a letter where it intersects the base of
⊕ ∠ ≅ ∠ because segment (Should you have congruent angles from step 3? Where? Why? Mark this fact in the diagram.)	
© ≅ because the (What segment is a side of both triangles? Ma	segment is the same as itself (reflexive property) ark this fact in the diagram.)
ⓐ \triangle ≅ \triangle because of triangle con (Check your facts from steps 2, 4, and 5. Is that enough to prove the trian	•
✓	areand are
(What were we trying to prove? What are the base angles?)	

5.2 (2) Given: $\overline{JK} \cong \overline{JL}$, \overline{JR} bisects $\angle KJL$ Prove: $\overline{JR} \perp \overline{KL}$


	s.)	
	$\underline{\ } \cong \angle \underline{\ }$ because $\underline{\ }$ bisects $\underline{\ }$. ed? What does bisect mean?What congruent parts did you mark?)	R
	\cong because the segment is the same as itself (reflexive prop t segment is a side of both triangles? Mark this fact in the diagram.)	erty)
④≅	because oftriangle congruence.	
Check your facts from	steps 1,2, and 3. Is that enough to prove the triangles are congruent? See lesson 5	5.1)
	because when triangles are congruent, all corresponding angle pairs and	
prresponding side pairs	s are	
What were we trying to	prove? What angles will help us do that?)	
What were we trying to	prove? What angles will help us do that?) © + = 180° because they are a linear pair (How can 180° help us get to 90°?)	r.
Vhat were we trying to	© + = 180° because they are a linear pai	r.
[] [© + = 180° because they are a linear pair (How can 180° help us get to 90°?) ↓ = 180° by substitution	r.
[] [© + = 180° because they are a linear pair (How can 180° help us get to 90°?) ↓	r.
	© + = 180° because they are a linear pair (How can 180° help us get to 90°?) ↓ = 180° by substitution	r.
@ + (How can we put the 8 2() = 1	© + = 180° because they are a linear pair (How can 180° help us get to 90°?) ↓ = 180° by substitution e information from steps 5 and 6 together?) ↓	r.
(<i>I</i>) = 1 (<i>I</i>) = 1 <i>I</i> = 1 <p< td=""><td>© + = 180° because they are a linear pair (How can 180° help us get to 90°?) ↓ = 180° by substitution e information from steps 5 and 6 together?) ↓</td><td>r.</td></p<>	© + = 180° because they are a linear pair (How can 180° help us get to 90°?) ↓ = 180° by substitution e information from steps 5 and 6 together?) ↓	r.

5.2			
(3) Given:	$\overline{AB} \cong \overline{AC}$, $\overline{XB} \cong \overline{XC}$	Prove:	\overline{AX} bisects $\angle BAC$

D I am given Mark congruent parts.)	
② ∠ABC ≅∠	and $\angle XBC \cong \angle$ because base angles of B
(Refer to notes from I	esson 4.5.)
	∠ABC – ∠ and ∠ACX = ∠ – ∠
(What equation	s can we write with the angles we know?)
Therefore ∠ABX = ∠ because	ACX re write with the angles we know?)
$\bigcirc \triangle _ \cong \triangle _$ /hich angles must be con	because ngruent to prove that?)
	because when triangles are congruent, all corresponding angle pairs and are
What were we trying to p	rove? What angles will help us do that?)
\	
	because when 2 adjacent angles are congruent, the larger angle formed by the two
gles must have been cu /hat does bisect mean?	

	n given ongruent parts.)				//	\mathbb{N}
	ongracint parts.)				//	$\backslash \backslash$
02		hecause has	e angles of an			\setminus
(Re	efer to notes from le			·	$K \frac{\frac{3}{1}}{X}$	$\frac{2\sqrt{4}}{Y}$
					А	
	③∠+∠	<u></u> =	and \angle	+∠=	_	
	because _					
	(What angle rel	ationships do y	ou see with angles 1	, 3, 2, and 4?)		
_ ↓	¥					
4	/ +/ =	: / + /	because			
(Sind	ce angles 1 and 2 a	are equal, what	can we do to simplif	y the equation? Ma	rk the diagram.)	
	•					
\wedge	$\simeq \wedge$	heca	use			
			ongruent to get the c			
ίση μ	iali ol thanyles sho	uiu we prove c	ongruent to get the t	ongruent segments	s we want:)	
	1]
	≅	because w	hen triangles are co	ngruent, all corresp	onding angle pairs and	k
espo	nding side pairs ar	е				
at we	ere we trying to pro	ve? What segn	ments will help us do	that?)		

A

Given:	\triangle ABC, \overline{XY} bisects \angle BYA and $\overline{BC} \parallel \overline{XY}$,	Prove: $\overline{YB} \cong \overline{YC}$
		A
D I am give	en	
		·
	↓ ② ∠ ≅ ∠ because	
	(What does bisect mean? Mark the diagram.)	
(3)∠	≅ ∠ because	
-	o we get out of parallel lines? Refer to notes from e diagram.)	n lesson 4.5.
	≝∠because	
	get out of parallel lines? Refer to notes from less	ion 4.5.
5	≅because	$\downarrow \downarrow \downarrow$
	ruent angles will help us prove that the segment	

get congruent sides?)

5.1 Exit Ticket Name	Per	🔲 😇 I got this! 🌾
Complete the statement. You may use diagrams to support y	our statement.	□ [®] I can with a bit of help か □ [®] I will, given lots of help [®] □ [®] I can't [™] ,
Given: \overline{AE} bisects $\angle BCD$, $\overline{BC} \cong \overline{DC}$.		☐ ◎ I von't bother to K ☐ ◎ I von't bother to K ☐ ◎ I refuse to K
Do $ riangle$ CAB and $ riangle$ CAD meet the SAS \cong criteria?	Provide evidence.	
5.1 Exit Ticket Name		 Soft this! I got this! I can with a bit of help
Complete the statement. You may use diagrams to support y	our statement.	🔲 🕙 I will, given lots of help 🏋 🔲 🎕 I can't 👗,
Given: \overline{AE} bisects $\angle BCD$, $\overline{BC} \cong \overline{DC}$.		🔲 😤 I won't bother to 🦸 🔲 🖄 I refuse to 💃
Do \triangle CAB and \triangle CAD meet the SAS \cong criteria?	Provide evidence.	B
5.1 Exit Ticket Name	Per	🔲 🐨 l got this! 🔯
Complete the statement. You may use diagrams to support y	our statement.	□ ⑧ I can with a bit of help 1? □ ◎ I will, given lots of help 1? □ ◎ I can't 🗼,
Given: \overline{AE} bisects $\angle BCD$, $\overline{BC} \cong \overline{DC}$.		☐ ③ I can I , ,,, ☐ ③ I won't bother to 옷 ☐ ③ I refuse to 余
Do $ riangle$ CAB and $ riangle$ CAD meet the SAS \cong criteria?	Provide evidence.	
5.1 Exit Ticket Name	Per	🔲 😁 l got this! 🔯
Complete the statement. You may use diagrams to support y	our statement.	🔲 🕲 I can with a bit of help 🎢 🔲 🅙 I will, given lots of help 🏋
Given: \overline{AE} bisects $\angle BCD$, $\overline{BC} \cong \overline{DC}$.		🔲 🛞 l can't 🗼, 🛄 😤 l won't bother to 🐧
Do \triangle CAB and \triangle CAD meet the SAS \cong criteria?	Provide evidence.	🗌 🏽 Irefuse to 🤹